Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of in situ annealing on the performance of spray coated polymer solar cells

Identifieur interne : 000284 ( Chine/Analysis ); précédent : 000283; suivant : 000285

Effect of in situ annealing on the performance of spray coated polymer solar cells

Auteurs : RBID : Pascal:13-0119404

Descripteurs français

English descriptors

Abstract

Polymer solar cell (PSC) with a structure of ITO/PEDOT:PSS/P3HT:PCBM/Bphen/Ag was fabricated using spray coating method, and the influence of in situ annealing treatment on the PSC performance was studied. Comparing the performance of in situ annealed PSC with that of conventional post-annealed cell, the results showed that the in situ annealing treatment at low temperature not only corresponding to 12% enhancement of fill factor, but also resulting in 13% increase of open circuit voltage. The interpenetrating networks of P3HT:PCBM film were characterized by X-ray diffraction, and surface morphologies have been studied by atomic force microscope. The performance enhancement of PSC was attributed to the improved hole mobility of P3HT:PCBM blend and the increased interaction of active layer.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0119404

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of in situ annealing on the performance of spray coated polymer solar cells</title>
<author>
<name>YIFAN ZHENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC)</s1>
<s2>Chengdu 610054</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610054</wicri:noRegion>
</affiliation>
</author>
<author>
<name>RUOFAN WU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Engineering, McGill University</s1>
<s2>Montreal, QC H3A1Y1</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Montreal, QC H3A1Y1</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI SHI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC)</s1>
<s2>Chengdu 610054</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610054</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHIQIANG GUAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC)</s1>
<s2>Chengdu 610054</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610054</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JUNSHENG YU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC)</s1>
<s2>Chengdu 610054</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610054</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0119404</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0119404 INIST</idno>
<idno type="RBID">Pascal:13-0119404</idno>
<idno type="wicri:Area/Main/Corpus">001122</idno>
<idno type="wicri:Area/Main/Repository">000E80</idno>
<idno type="wicri:Area/Chine/Extraction">000284</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Annealing</term>
<term>Atomic force microscopy</term>
<term>Butyric acid</term>
<term>Coated material</term>
<term>Coatings</term>
<term>Diversity combining</term>
<term>Enhancement factor</term>
<term>Ester</term>
<term>Fill factor</term>
<term>Fullerene compounds</term>
<term>Heat treatment</term>
<term>Hole mobility</term>
<term>In situ</term>
<term>Indium oxide</term>
<term>Low temperature</term>
<term>Open circuit voltage</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Polymer blends</term>
<term>Spray coating</term>
<term>Styrenesulfonate polymer</term>
<term>Surface structure</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>In situ</term>
<term>Recuit</term>
<term>Traitement thermique</term>
<term>Evaluation performance</term>
<term>Revêtement</term>
<term>Cellule solaire organique</term>
<term>Combinaison diversité</term>
<term>Addition étain</term>
<term>Dépôt projection</term>
<term>Basse température</term>
<term>Facteur accroissement</term>
<term>Facteur remplissage</term>
<term>Tension circuit ouvert</term>
<term>Diffraction RX</term>
<term>Structure surface</term>
<term>Microscopie force atomique</term>
<term>Mobilité trou</term>
<term>Couche active</term>
<term>Matériau revêtu</term>
<term>Oxyde d'indium</term>
<term>Styrènesulfonate polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Mélange polymère</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>ITO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polymer solar cell (PSC) with a structure of ITO/PEDOT:PSS/P3HT:PCBM/Bphen/Ag was fabricated using spray coating method, and the influence of in situ annealing treatment on the PSC performance was studied. Comparing the performance of in situ annealed PSC with that of conventional post-annealed cell, the results showed that the in situ annealing treatment at low temperature not only corresponding to 12% enhancement of fill factor, but also resulting in 13% increase of open circuit voltage. The interpenetrating networks of P3HT:PCBM film were characterized by X-ray diffraction, and surface morphologies have been studied by atomic force microscope. The performance enhancement of PSC was attributed to the improved hole mobility of P3HT:PCBM blend and the increased interaction of active layer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of in situ annealing on the performance of spray coated polymer solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YIFAN ZHENG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RUOFAN WU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WEI SHI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHIQIANG GUAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JUNSHENG YU</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC)</s1>
<s2>Chengdu 610054</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Engineering, McGill University</s1>
<s2>Montreal, QC H3A1Y1</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>200-205</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000173215070290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0119404</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Polymer solar cell (PSC) with a structure of ITO/PEDOT:PSS/P3HT:PCBM/Bphen/Ag was fabricated using spray coating method, and the influence of in situ annealing treatment on the PSC performance was studied. Comparing the performance of in situ annealed PSC with that of conventional post-annealed cell, the results showed that the in situ annealing treatment at low temperature not only corresponding to 12% enhancement of fill factor, but also resulting in 13% increase of open circuit voltage. The interpenetrating networks of P3HT:PCBM film were characterized by X-ray diffraction, and surface morphologies have been studied by atomic force microscope. The performance enhancement of PSC was attributed to the improved hole mobility of P3HT:PCBM blend and the increased interaction of active layer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Combinaison diversité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Diversity combining</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Combinación diversidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dépôt projection</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Spray coating</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Depósito proyección</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Facteur accroissement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Enhancement factor</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Factor incremento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Structure surface</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Surface structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estructura superficie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Mobilité trou</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Hole mobility</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Movilidad agujero</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>091</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000284 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000284 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0119404
   |texte=   Effect of in situ annealing on the performance of spray coated polymer solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024